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Innovation in Kiwi-land



Overview

• The Challenge

• Lessons from history

• Policy levers

• Concluding thoughts



The Challenge

• There’s controversy around the exact timetable, but 

general agreement that over approximately the next 4 

decades, GHG emissions have to be drastically reduced

• We hope that world GDP will continue to grow over this 

period, so the GHG/GDP ratio needs to fall by even more 

than the needed absolute reduction in GHG emissions

• Back of the envelope: something like a 75-90% reduction 

in global GHG/GDP is needed by 2050



How hard will this be?

• From 1970-2010, the global petroleum/GDP ratio fell by 

about 40%.



Historical Oil Intensity of the World Economy
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How hard will this be?

• From 1970-2010, the global petroleum/GDP ratio fell by 
about 40%.

• Over this time period, we saw an approximately 6-fold 
increase in the price of petroleum (prior to the most 
recent decline)

• Since petroleum is a subset of fossil fuels, it is inherently 
much more difficult to reduce overall fossil fuel use than 
to reduce petroleum use

We need a transformation in the energy/economy 

system that is qualitatively broader and deeper than 

anything that we’ve ever seen in this sector.



Do prices spur innovation?

• Old literature on induced innovation (Hicks, 1932)

• Theory suggests that high/rising carbon price should 
direct resources towards carbon-saving innovation

• Some evidence on changing menus (Newell, Jaffe and 
Stavins, 1999)

• No natural experiment confirming innovation impacts of 
the magnitude sought here



What does this mean for climate policy?

• Even significant increase in the effective price of carbon is 
unlikely, on its own, to yield needed emissions reductions.

• A qualitative socio-economic transformation will be 
required

• Getting environmental policy “right” is surely necessary, it 
is unlikely to be sufficient

• Carbon base will be larger for a long time, so private 
incentives will continue to favor carbon innovation 
(Acemoglu, et al 2009)



Is there any historical analogue?

• The global IT/communication system has seen a 

transformation in performance over the last 4 decades 

that is qualitatively comparable to what we need in 

energy.

• Most of the key features of today’s IT/communications 

system (the internet; smart mobile phones; gigabytes of 

memory on a keychain, etc.) were not even visualized as 

potential future products or markets as of 1970.

• We need a qualitatively comparable transformation of the 

energy/economy system.



Implications

• If we succeed, it is very likely that major components of 

the 2050 system will be technologies that we have not 

yet even conceived, let alone begun to develop

• The companies that will play large roles in the 2050 

system probably do not exist today, and many of today’s 

giants are likely to disappear, shrink, or be radically 

transformed.

• Major new technologies are likely to emerge and then fall 

by the wayside (think minicomputer, fax machine, CD 

ROM)

• Major contributions will be needed from both the public 

and private sectors



Technology Market Failures

• Imperfect appropriability of knowledge

– Research spillovers (Jaffe, 1998)

– Learning curve spillovers (Thompson, 2010)

– User-driven technology improvement (von Hippel, 2010)

• Asymmetric information affecting capital market (Hall and 
Lerner, 2010)

• Path-dependence and potential importance of technology 
trajectories (Dosi and Nelson, 2010)

Important caveat:  SR inelastic supply of specialized 

human capital



What can we learn from past attempts to 
push the technology frontier

• Manhattan/Apollo projects

• War on Cancer

• IT and Communications

• Synfuels



Manhattan and Apollo projects
(Willbanks, 2011)

• Manahttan project: $28B over 2‐3 years 

• Apollo $140B over 10 years

• Well‐defined technical objectives with cost no 
object

• Maybe relevant to subgoals, e.g. carbon capture 
and storage



War on Cancer/NIH budget doubling
(Cockburn, et al, 2011)

• Human capital is crucial

• Market demand (3rd party payment, one way or another)

• NIH doubling

– Adjustment costs

– Importance of training in parallel with research 
expansion



Semiconductors, computers and 
communications
(Mowery,2011)

• Design competitions for defense and space uses, with 
little or no regard to cost

• Transition to commercial markets later after cost fell

• Induced R&D through competition for technically 
specified products (Lichtenberg, 1988)



Synfuels
(Cohen and Noll, 1991)

• Government-built demonstration plants

• (contrast to previous case)

• Not cost-effective

• Crowded out private investment



Policy levers

• Scientific research

• Government procurement

• Intellectual Property rules



Policy levers:  scientific research

• Significantly increased fundamental science funding

• Large private science efforts such as Bell Labs, IBM, 
Xerox were major drivers of early digital technology

• These are mostly gone and do not seem likely to 
come back

• Capability building must be addressed along with 
research funding per se (think of NIH training grants)

• Entire energy science/technology system must be scaled 
up

• Again, need long-term commitment—ideally 5% real 
increase for decades, not a crash programme that 
creates large adjustment costs and then goes away
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Government procurement

• Large-scale specific goals, such as the atomic bomb or 

landing on the moon.

• Scientific/technological advances emerge as by-

product of the need to solve the particular challenges 

of the project.

• Not clear if this is a cost-effective way of improving 

technology

• May be valuable as political/popular focusing 

mechanism

• Design competitions for ongoing purchases (think military 

aircraft)

• Mandates on quasi-public or regulated entities, such as 

renewable energy portfolio rules



Policy Levers: Intellectual Property 

Rules
• IP protection theoretically supports investment in 

innovation by providing protection for development 

expenditures.

• Empirical evidence in support of their efficacy is limited.

• “Strong” IP protection also inhibits the diffusion of new 

technologies. This is problematic for two reasons:

• GHG-reducing benefit is less than it could be

• Feedback from deployment to innovation is also 

inhibited, so new technologies may not improve as 

fast as they might.

• LDCs are not fooled by the claim that enforcing strong IP 

is in their own economic interest.



Systematic Evaluation

• It’s embarrassing how little we know about the 

effectiveness of different policy instruments

• Agencies are allowed to get away with success stories 

rather than true evaluation

• Need to measure the “treatment effect” of a policy 

intervention just as we do for drugs

• Randomized control trials

• Natural experiments

• Over the next decade, we could learn a lot about what 

works best, which could then be implemented as we 

continue to ramp up



Speculative Conclusions
• “Carbon” policy and “innovation” policy are not substitutes—they are 

complements and we need both

• The social rate of return to government technology investments is high.

• Increase in public support should be gradual.

• Building specific human capital is critical.

• Time scale is decades, which allows time to build capabilities efficiently, but 
also requires credible long-term commitments

• Public purchases and/or purchase mandates will be needed.

• Government investment should be designed to be complementary to 
private investment.

• Look for opportunities for global “win-win”: e.g. pair strong global IP 
enforcement with significant financial assistance for poor countries to 
implement new GHG-reducing technologies

• “Success” will almost surely require technologies not foreseen today.

• Should be embarking on systematic programme evaluation

• Nothing should be “off the table.”


